
Expression

and

Flow Control

Target

2

學會使用運算子

學會邏輯判斷

學會使用迴圈

Index

01. Expression
- Definition
- Operator

02. Flow Control

- Loop

- Logical expressions

- Selection statements

- Exit

Expression

01

Expression
Definition

Definition

➢ Expression is one of C's distinguishing characters

➢ An expression is a sentence with two or more operands by one or more
operators

ratio = TWD / 30;

sum = 5 + 2;

value = (5 + 2) + ratio - area;

area = width*height;

operand

operator

5

Expression
Operator

+ Addition >> Bit right shift

- Subtraction ++ Prefix increment

* Multiplication -- Prefix decrement

/ Division > Greater than

% Remainder >= Greater than or equal

+ Positive < Less than

- Negative <= Less than or equal

~ Complement == Equality

& And != Inequality

| Or ! Not

^ XOR && Logical And

= Assignment ∥ Logical Or

<< Bit left shift

6

Expression
Operator - Arithmetic operators

Binary

➢ An operator acts on two operands

➢ C provides 5 binary arithmetic operators
• + - * / %

Unary

➢ It's used primarily to emphasize a numeric constant is positive

➢ C provides 2 unary arithmetic operators
• + and -

+: plus i = +1; -: plus j = -1;

7

Expression
Operator - Arithmetic operators

Binary

➢ When int and float operands are mixed, the result has type float

➢ The value of i%j is the remainder of i/j

9 + 2.5f has the value 11.5, and 6.7f / 2 has the value 3.35

8%3 is the value 2, 9%3 is the value 0

Only for integer

➢ The / and % operator require special care

When both operand are integers, / truncates the result, for example 1 / 2 is 0 not 0.5

The % operator requires integer operands; if either operand is not integer, the program
won't compile

8

Expression
Operator - Arithmetic operators

Binary

➢ The behavior when / and % are used with negative operands is
implementation-defined in C89

8%5 -8%5 8%-5 -8%-5

Quotient:

Remainder:

1

3 -3 or 2

-1 or -2

3 or -2

-1 or -2

-3 or 2

1 or 2

9

Expression
Operator - Precedence

Operator precedence

➢ It determines which operator is performed first in an expression with more
than one operators

Highest： + - (unary)

* / %

Lowest： + - (binary)

x + y * z =

-x * -y =

+x + y / z =

Examples：

x + (y * z)

(-x) * (-y)

(+x) + (y / z)
10

Expression
Operator - An Example

Write a program to compute a UPC check digit

➢ Most goods sold in U.S. and Canadian stores are marked with a University
Product code
First digit: Type of item

First group of five digits: Manufacturer

Second group of five digits: Product

Final digit: Check digit, used to identify an error in the preceding digit

How to compute check digit?

Add the first, third, fifth, seventh, ninth, eleventh digits

Add the second, fourth, sixth, eighth, and tenth digits

Multiply the first sum by 3 and add it to the second sum

Subtract 1 from the total

Compute the remainder when the adjusted total is divided by 10

Subtract the remainder from 9
11

Expression
Operator - An Example

If UPC is 0 13800 15173 5

First sum = 0 + 3 + 0 + 1 + 1 + 3 = 8

Second sum = 1 + 8 + 0 +5 + 7 = 21

Multiply the first sum by 3 and add it to second sum = 8 * 3 + 21 = 45

Subtract 1 from the total = 44

Remainder upon dividing by 10 = 4

Subtract the remainder from 9 = 5 Enter the first (single) digit: 0
Enter first group of five digits: 13800
Enter second group of five digits: 15173
Check digit: 5 12

Expression
Operator - Assignment

Assignment

➢ The variable can be set a value, i.e. assignment "="

int height;

float width;

height = 8;

width = 200.15;

➢ Hence, the variable must be declared before assigning a value

➢ The variable can be assigned by other variable

float area;

area = width *height

13

Expression
Operator - Assignment

Assignment

➢ If the types of i and e are different, the value of e will be converted to the
type of i (e is the expression)

i = e ;

int i;

float j;

i = 72.93f;

j = 162;

14

Expression
Operator - Assignment

Side effect

➢ An operator that alters one of its operands is defined as the side effect

➢ Several assignments can be chained together

int i, j, k;

k = j = i = 99;

k = (j = (i = 99));

➢ Watch out for unexpected results in chained assignments as a result of type
conversion

int i;

float j;

j = i = 22.343f; -> ? j = 22.0
i = 22

15

Expression
Operator - Assignment

Lvalues

➢ The assignment operator requires a lvalue as its left operand

➢ A lvalue represents an object stored in computer memory, not a constant or
the result of a computation

➢ It's illegal to put any other kind of expression on the left side of an
assignment expression

12 = i; //Error

i + j = 0; //Error

-i = j; //Error

➢ The compiler will produce an error message such as "invalid lvalue in
assignment"

16

Expression
Operator - Assignment

Compound assignment

➢ += -= *= %= /=

➢ i (operator)= (e); means i = i (operator) (e);

int i = 1;

i = i + 2;

Compound assignment operator

int i = 1, j = 2, k = 3;

i += 2; // i = i + 2

i *= j+k // i = i * (j+k)

17

Expression
Operator - Increment and Decrement

Increment and decrement operators

➢ They can be employed as prefix (++i) or postfix (i++) operators

➢ They have side effects

➢ "++" and "--"
• ++：adds 1 to its operand

• --：subtracts 1 to its operand

int prefix_i = 1;

printf("prefix_i is %d\n", ++prefix_i);

printf("prefix_i is %d\n", prefix_i);

int postfix_i = 1;

printf("postfix_i is %d\n", postfix_i++);

printf("postfix_i is %d\n", postfix_i);

➢ "++prefix_i" means "increment prefix_i immediately", while "postfix_i++"
means "use the old value of postfix_i for now, but increment it later"

➢ How much later? The C standard doesn't specify a precise time, but it's safe to
assume that the variable will be incremented before the next statement is
executed

18

Expression
Operator - Increment and Decrement

When ++ or -- is used more than once in the same expression, the
result can often be hard to understand

➢ The last statement is equivalent to

i = 1;

j = 2;

k = ++i + j++;

i = i + 1;

k = i + j;

j = j + 1;

19

Expression
Operator - Increment and Decrement

Precedence Name Symbol(s) Associativity

1 Postfix increment Operand++ Left

Postfix decrement Operand--

2 Prefix increment ++Operand Right

Prefix decrement --Operand

Unary plus +Operand

Unary minus -Operand

3 Multiplicative Operand * / % Operand Left

4 Additive Operand + - Operand

5 Assignment Operand

=
*=
/=
%=
+=
-=

Operand Right

20

Expression
Operator - Increment and Decrement

Precedence Name Symbol(s)

1 Postfix increment Operand++

Postfix decrement Operand--

2 Prefix increment ++Operand

Prefix decrement --Operand

Unary plus +Operand

Unary minus -Operand

3 Multiplicative Operand * / % Operand

4 Additive Operand + - Operand

5 Assignment Operand

=
*=
/=
%=
+=
-=

Operand

x = y += z++-i+--j / -k

x = y += (z++)-i+--j / -k

x = y += (z++)-i+(--j) / -k

x = y += (z++)-i+(--j) / (-k)

x = y += (z++)-i+((--j) / (-k))

x = y += ((z++)-i)+((--j) / (-k))

x = y += (((z++)-i)+((--j) / (-k)))

x = (y += (((z++)-i)+((--j) / (-k))))

21

Expression
Operator - Important Concept

Order of subexpression evaluation

➢ Most expressions have the same value regardless of the order in which their
subexpressions are evaluated

➢ However, this may not be true when a subexpression modifies one of its
operands

int x = 10, y , z;

z = (y = x + 2) – (x = 1);

printf("x = %d\ty = %d\tz = %d\n", x, y, z);

22

Expression
Operator - Important Concept

Order of subexpression evaluation

➢ Besides the assignment operators, the only operators that modify their
operands are increment and decrement

➢ When using these operators, be careful that an expression doesn't depend on
a particular order of evaluation

int x = 2, y = 2, z;

z = x * x++;

int x = 2, y = 2, z;

z = y * x++;

➢ It's natural to assume that z is assigned 4. However, z could just as well as
assigned 6 instead

23

Expression
Operator - Examples

Show the output produced by each of the following program fragments.
Assume that i and j are int variables

(a)

i = 1;

printf("%d ", i++ - 1);

printf("%d", i);

(b)

i = 10, j = 5;

printf("%d ", i++ - ++j);

printf("%d %d", i, j);

(c)

i = 7, j = 8;

printf("%d ", i++ - --j);

printf("%d %d", i, j);

(a)

0 2

(b)

4 11 6

(c)

0 8 7

24

Expression
Operator - Examples

Write a program to reverse a four-digit number by using %d conversion
specification

25

Flow Control

02

Flow Control
Logical expression

Excluding return and expression statements, most of remaining
statements could be divided into the following types:

➢ Select: if and switch

➢ Iteration: for, while, and do

➢ Jump: break and continue

Logical expressions is built from

➢ Relational operators (< , <= , > , and >=)

➢ Equality operators (== and !=)

➢ Logical operators (&&, ||, and !)

27

Flow Control
Logical expression - Relational operators

The relational operators can be used to compare two operands with
mixed types

Symbol Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

10 < 11 1

x < y < z?

1 > 2.5 0

i + j < k - l (i + j) < (k - l)

(x < y) < z

(0 o r 1) < z

28

Flow Control
Logical expression - Equality operators

The equality operators have lower precedence than the relation operators

i < j == j < k (i < j) == (j < k)

(i >= j) + (i == j) either 0, 1, or 2

Symbol Meaning

== Equal to

!= Not equal to

29

Flow Control
Logical expression - Logical operators

The logical operators generate either 0 or 1

Symbol Meaning

!
Logical "negative"

(unary)

&& Logical "and"

|| Logical "or"

➢ The non-zero operand will be regarded as the true value and the zero one as
false value

➢ The precedence of "&&" and "||" is lower than relation and equality operators

30

Flow Control
Selection statements - If and else

➢ The parentheses around the expression are mandatory

➢ The word "then" is unnecessary in C

➢ When if statement is performed, the expression is evaluated and the
statement is executed if the value after evaluating expression is non-zero

if (expression) statement

int x = y = 1;

if (x == y)

printf("Haha\n");

int x = y = 1;

if (x = y)

printf("Haha\n");

31

Flow Control
Selection statements - If and else

➢ How to design a if statement that will test whether a variable falls within a
range of values?

if (expression) statement

if (0 <= x && x <= n)

➢ How to design a if statement that will test whether a variable is out of a
range of values?

if (x < 0 || n < x)

32

Flow Control
Selection statements - If and else

if (expression) statement

Compound statements

➢ The statement in the if template is singular, not plural

How to control two or more statements?

➢ Using {}

if (x < y)
{

x = y;
printf("哭阿");

}

33

Flow Control
Selection statements - If and else

The statement after the word else will be executed if the expression is
not success

if (expression) statement else statement

if (x < y)
x = y;

else
y = x;

34

Flow Control
Selection statements - If and else

There are no restrictions on what kind of statements can appear inside
an if statement

if (expression) statement else statement

if (x < y)
if (z < x)

min = z;
else

min = x;
else
if (z < j)

min = z;
else

min = j; 35

Flow Control
Selection statements - If and else

Add braces for easy modification and read

if (expression) statement else statement

if (x < y)
if (z < x)

min = z;
else

min = x;
else
if (z < j)

min = z;
else

min = j;

if (x < y) {
if (z < x)

min = z;
else

min = x;
} else {

if (z < j)
min = z;

else
min = j;

}

if (x < y) {
if (z < x){

min = z;
} else {

min = x;
}

} else {
if (z < j) {
min = z;

} else {
min = j;

}
}

36

Flow Control
Selection statements - If and else

It is often to test a series of conditions, stopping as soon as one of
them is true

if (expression) statement else if statement else statement

if (m < n)
printf("m is less than n\n");

else
if (m == n)

printf("m is equal to n\n");
else

printf("m is greater than n\n");

if (m < n)
printf("m is less than n\n");

else if (m == n)
printf("m is equal to n\n");

else
printf("m is greater than n\n");

37

Flow Control
Selection statements - If and else

if (expression) statement else if statement else statement

if (expression)
statement

else if (expression)
statement

…
else if (expression)

statement
else

statement

38

Flow Control
Selection statements - If and else

Write a program that inputs a trade price and output a commission
price

Under $500
$500 ~ $1000
$1001 ~ $2000
$2001 ~ $3500
$3501 ~ $6500
Over 6500

Trade price Commission rate

$20 + 1.5%
$30 + 0.93%
$50 + 0.76%
$70 + 0.55%
$100 + 0.33%
$150 + 0.13%

Enter price of trade: 2000
Commission: 65.2

The minimum Commission is 23

39

Flow Control
Selection statements - If and else

if (x != 0)

if (y != 0)

result = y/x;

else

printf("Error the x is equal to 0\n");

if (x != 0)

if (y != 0)

result = y/x;

else

printf("Error the x is equal to 0\n");

Dangling else problem

40

Flow Control
Selection statements - Conditional Expressions

C also provides an operator to allows an expression to execute one of
two values depending on the value of a condition

The conditional expression contains two symbols, " ? " and " : "

expression 1? expression 2 : expression 3

int x, y, z;
x = 1;
y = 2;
z = x>y? x : y;
z = (x >=0? x : 0) + y;

int x, y, z;
x = 1;
y = 2;
if (x > y) z = x;
else z = y;
if (x > 0) z= x + y;
else z = 0 + y;

41

Flow Control
Selection statements - Switch

Switch statement

switch (expression)
{

case constant-expression: statements
…
case constant-expression: statements
default: statements

}

• Controlling expression

• The word switch must be followed by an integer
expression in parentheses

• The characters are also treated as integer

• Floating-point and string don't qualify

• Case label

• case constant-expression:

• It is like an ordinary expression except that it
can't contain variables or function calls

• Statements

• No braces are required around the statements

42

Flow Control
Selection statements - Switch

if (grade == 3)
printf("Very good\n");

else if (grade == 2)
printf("Good\n");

else if (grade == 1)
printf("Average\n");

else if (grade == 0)
printf("Failing\n");

else
printf("Illegal grade\n");

Cascaded if Statement Switch statement

switch (grade)
{

case 3:
printf("Very good\n");
break;

case 2:
printf("Good\n");
break;

case 1:
printf("Average\n");
break;

case 0:
printf("Failing\n");
break;

default:
printf("Illegal grade\n");
break;

}
43

Flow Control
Selection statements - Switch

The role of the break

➢ It causes the program to "break" out of the switch statement

switch (grade)
{

case 3:
printf("Very good\n");

case 2:
printf("Good\n");

case 1:
printf("Average\n");

case 0:
printf("Failing\n");

default:
printf("Illegal grade\n");

}

If the value of grade is 2, the message
printed is?

44

Flow Control
Selection statements - Switch

Programmer sometimes put several case labels on the same line

switch (grade)
{

case 3:
case 2:
case 1:

printf("Passing\n");
break;

case 0:
printf("Failing\n");
break;

default:
printf("Illegal grade\n");
break;

}

switch (grade)
{

case 3: case 2: case 1:
printf("Passing\n");
break;

case 0:
printf("Failing\n");
break;

default:
printf("Illegal grade\n");
break;

}

45

Flow Control
Selection statements - Switch

Write a program to display dates in the following formatting

46

Flow Control
Loop

Loop

➢ It is used to repeat a block of code until completing the specified condition

➢ Every loop has a controlling expression and loop body

➢ Three types:

• while

• do…while

• for

loop (controlling expression)

loop body

47

Flow Control
Loop - while

The while statement is the simplest and most fundamental

Example

while (expression)

statement

while (x < n) /*controlling expression*/

x = x * 2; /*loop body*/

if n = 10, how many iteration does the loop body
execute?

48

Flow Control
Loop - while

A trace of the loop when n = 10

x = 1; x is now 1.
Is x < n? Yes; continue.
x = x * 2; x is now 2.
Is x < n? Yes; continue.
x = x * 2; x is now 4.
Is x < n? Yes; continue.
x = x * 2; x is now 8.
Is x < n? Yes; continue.
x = x * 2; x is now 16.
Is x < n? No; exit from loop.

while (x < n)

x = x * 2;

49

Flow Control
Loop - while

Compound statement

while (expression)

{

statements
}

Example

while (x > 0)
{

printf("T minus %d and counting\n", x)
x--;

}
50

Flow Control
Loop - while

The while statement

➢ The controlling expression is false when a while loop terminates

➢ A while statement is often written in a variety of ways

while (x > 0)
{

printf("T minus %d and counting\n", x);
x--;

}

while (x > 0)
{

printf("T minus %d and counting\n", x--);
}

51

Flow Control
Loop - while

Infinite loop

➢ A while statement didn't terminate if the controlling expression is a nonzero
value

while (1)
{

…
}

A while statement of this form will execute forever unless its body
contains a statement that transfers control out of the loop (such as
break, goto, return) or call a function that causes the program to
terminate

52

Flow Control
Loop - while

Two examples

➢ Write a program to print a table of squares

➢ Write a program to summary a series of numbers

53

Flow Control
Loop - do…while

The general form of do…while statement is

The do statement is essentially a while statement but performing
controlling expression after each execution of loop body

do {

statements

} while (expression);

i = 10;
do {

printf("T minus %d and counting\n", i);
--i;

} while (i > 0);
54

Flow Control
Loop - do…while

Write a program to calculate the number of digital in an integer

55

Flow Control
Loop - for

The for statement is the best way to write many loops

for (exp 1; exp 2; exp 3)

{

statements
}

where exp 1 is the initialization, exp 2 is the stop condition, and exp 3
is the update condition

for (int x = 0; x < 10; x++)

{

printf("x = %d", x);
}

56

Flow Control
Loop - for

The for statement the while statement

for (exp 1; exp 2; exp 3)

{

statements
}

exp 1;

while (exp 2)

{

statements

exp 3;
}

57

Flow Control
Loop - for

C allows any or all of the expressions that control a for statement to be
omitted

If the first expression is omitted, no initialization is performed before
the loop is executed

i = 10;
for (; i > 0; --i)

printf("T minus %d and counting\n", i);

If the third expression is omitted, the loop body is responsible for
ensuring that value of the second expression eventually becomes false

for (i = 10; i > 0;)
printf("T minus %d and counting\n", i--);

58

Flow Control
Loop - for

When the first and third expressions are both omitted, the resulting
loop is nothing more than a while statement in disguise

for (; i > 0;)
printf("T minus %d and counting\n", i--);

while (i > 0)
printf("T minus %d and counting\n", i--

);

59

Flow Control
Loop - for

A variable declared by a for statement can't be accessed outside the
body of the loop (we say that it's not visible outside the loop)

for (int i = 0; i < n; i++) {
…
printf("%d", i); // legal, i is visible inside loop
…

}
printf("%d", i); // Error

60

Flow Control
Loop - for

A for statement may declare more than one variable by using the
comma operator

exp 1_1, exp 1_2, exp 1_3, …

for (exp 1_1, exp 1_2, exp 1_3, … ; exp 2; exp 3)

{

statements
}

for (sum = 0, x = 1; x = 10; x++)

{

sum += x
}

sum = 0

for (x = 1; x <= 10; x++)

{

sum += x
} 61

Flow Control
Exit

If we want to exit a loop in the middle, using the following statement

➢ break

➢ continue

break

62

Flow Control
Exit

If we want to exit a loop in the middle, using the following statement

➢ break

➢ continue

continue

63

Flow Control
Exit

A break statement transfers control out of the innermost enclosing
while, do, for, or switch statement

while (…)

{

switch(…)

{

…

break;

…

}
}

64

Flow Control
Exit

Write a program to calculate a check-book balance using for and switch
statement

65

